CHAPTER 1II

Capillarity

The topic of capillarity concerns interfaces that are sufficiently mobile to
assume an equilibrium shape. The most common examples are meniscuses,
thin films, and drops formed by liquids in air or in another liquid. Since it
deals with equilibrium configurations, capillarity occupies a place in the general
framework of thermodynamics in the context of the macroscopic and statisti-
cal behavior of interfaces rather than the details of their molecular structure. In
this chapter we describe the measurement of surface tension and present some
fundamental results. In Chapter III we discuss the thermodynamics of liquid
surfaces.

1. Surface Tension and Surface Free Energy

Although referred to as a free energy per unit area, surface tension may equally
well be thought of as a force per unit length. Two examples serve to illustrate
these viewpoints. Consider, first, a soap film stretched over a wire frame, one
end of which is movable (Fig. 1I-1). Experimentally one observes that a force
is acting on the movable member in the direction opposite to that of the arrow
in the diagram. If the value of the force per unit length is denoted by +, then
the work done in extending the movable member a distance dx is

Work = y! dx = vdA (II-1)

where dA = [ dx is the change in area. In the second formulation, v appears to be
an energy per unit area. Customary units, then, may either be ergs per square
centimeter (ergs/cm?) or dynes per centimeter (dyn/cm); these are identical
dimensionally. The corresponding SI units are joules per square meter (J/m?)
or Newtons per meter (N/m); surface tensions reported in dyn/cm and mN/m
have the same numerical value.

A second illustration involves the soap bubble. We will choose to think of v
in terms of energy per unit area. In the absence of gravitational or other fields,
a soap bubble is spherical, as this is the shape of minimum surface area for
an enclosed volume. A soap bubble of radius r has a total surface free energy
of 4xr2y and, if the radius were to decrease by dr, then the change in surface
free energy would be 8xry dr. Since shrinking decreases the surface energy,
the tendency to do so must be balanced by a pressure difference across the film
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\ AN \ Fig. II-1. A soap film stretched across a
wire frame with one movable side.
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AP such that the work against this pressure difference AP 4wr?dr is just equal
to the decrease in surface free energy. Thus

AP 4xr? dr=8xry dr (I1-2)
or
2
AP = —rl (II-3)

One thus arrives at the important conclusion that the smaller the bubble, the
greater the pressure of the air inside relative to that outside.

The preceding conclusion is easily verified experimentally by arranging two bubbles
with a common air connection, as illustrated in Fig. II-2. The arrangement is unstable,
and the smaller of the two bubbles will shrink while the other enlarges. Note, however,
that the smaller bubble does not shrink indefinitely; once its radius equals that of the
tube, its radius of curvature will increase as it continues to shrink until the final stage,
where mechanical equilibrium is satisfied, and the two radii of curvature are equal as
shown by the dotted lines.

The foregoing examples illustrate the point that equilibrium surfaces may
be treated using either the mechanical concept of surface tension or the mathe-
matically equivalent concept of surface free energy. (The derivation of Eq. II-3
from the surface tension point of view is given as an exercise at the end of the
chapter). This mathematical equivalence holds everywhere in capillarity phe-
nomena. As discussed in Section III-2, a similar duality of viewpoint can be
argued on a molecular scale so that the decision as to whether surface tension
or surface free energy is the more fundamental concept becomes somewhat a
matter of individual taste. The term surface tension is the older of the two; it
goes back to early ideas that the surface of a liquid had some kind of con-
tractile “skin.” Surface free energy implies only that work is required to bring
molecules from the interior of the phase to the surface. Because of its connec-
tion to thermodynamic language, these authors consider the latter preferable if
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Fig. II-2. Illustration of the Young-Laplace equation.

a choice must be made; however, the two terms are used interchangeably in
this book.

2. The Young-Laplace Equation

Equation II-3 is a special case of a more general relationship that is the basic
equation of capillarity and was given in 1805 by Young [1] and by Laplace [2].
In general, it is necessary to invoke two radii of curvature to describe a curved
surface; these are equal for a sphere, but not necessarily otherwise. A small sec-
tion of an arbitrarily curved surface is shown in Fig. II-3. The two radii of cur-
vature, R, and R,,T are indicated in the figure, and the section of surface taken

11t is perhaps worthwhile to digress briefly on the subject of radii of curvature. The two radii
of curvature for some arbitrarily curved surface are obtained as follows. One defines a normal to
the surface at the point in question and then passes a plane through the surface containing the
normal. The line of intersection in general will be curved, and the radius of curvature is that for
a circle tangent to the line at the point involved. The second radius of curvature is obtained by
passing a second plane through the surface, also containing the normal, but perpendicular to the
first plane. This gives a second line of intersection and a second radius of curvature.

If the first plane is rotated through a full circle, the first radius of curvature will go through a
minimum, and its value at this minimum is called the principal radius of curvature. The second
principal radius of curvature is then that in the second plane, kept at right angles to the first.
Because Fig. II-3 and Eq. II-7 are obtained by quite arbitrary orientation of the first plane, the
radii R} and Ry are not necessarily the principal radii of curvature. The pressure difference AP,
cannot depend upon the manner in which R; and Rz are chosen, however, and it follows that
the sum (1/R| + 1/Ry) is independent of how the first plane is oriented (although, of course, the
second plane is always at right angles to it).



[I-2 THE YOUNG-LAPLACE EQUATION 7

Fig. II-3. Condition for mechanical equilibrium for an arbitrarily curved surface.

is small enough so that R, and R; are essentially constant. Now if the surface
is displaced a small distance outward, the change in area will be

A =(x+dx)(y+dy)—xy=xdy+ydx
The work done in forming this additional amount of surface is then
Work = y(x dy + y dx)

There will be a pressure difference AP across the surface; it acts on the area
xy and through a distance dz. The corresponding work is thus

Work = AP xy dz (I1-6)

Most of the situations encountered in capillarity involve figures of revolution, and for these it
is possible to write down explicit expressions for R and Ry by choosing plane 1 so that it passes
through the axis of revolution. As shown in Fig. II-7a, R| then swings in the plane of the paper,
i.e., it is the curvature of the profile at the point in question. R| is therefore given simply by the
expression from analytical geometry for the curvature of a line

1/R1 =y” /(1 +y?)/? (11-4)

where y” and y” denote the first and second derivatives with respect to x. The radius Ry must then
be in the plane perpendicular to that of the paper and, for figures of revolution, must be given
by extending the normal to the profile until it hits the axis of revolution, again as shown in Fig.
II-7a. Tumning to Fig. 1I-75, the value of R, for the coordinates (x,y) on the profile is given by
1/R3 = sin ¢/x, and since tan ¢ is equal to y*, one obtains the following expression for R:

1/Ry =y’ /x(1 + y'2)1/2 (11-5)
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From a comparison of similar triangles, it follows that

x+dx  x of dx x dz
R1+dz - R] - Rl
and
y+dy y y dz
= ordy= =—
R2+dZ R, ? R

If the surface is to be in mechanical equilibrium, the two work terms as given
must be equal, and on equating them and substituting in the expressions for dx
and dy, the final result obtained is

11
P . II-
AP 7(R1+R2) a1-7)

Equation II-7 is the fundamental equation of capillarity and will recur many
times in this chapter.

It is apparent that Eq. II-7 reduces to Eq. I1-3 for the case of both radii being
equal, as is true for a sphere. For a plane surface, the two radii are each infinite
and AP is therefore zero; thus there is no pressure difference across a plane
surface.

3. Some Experiments with Soap Films

There are a number of relatively simple experiments with soap films that
illustrate beautifully some of the implications of the Young-Laplace equation.
Two of these have already been mentioned. Neglecting gravitational effects, a
film stretched across a frame as in Fig. II-1 will be planar because the pressure
is the same as both sides of the film. The experiment depicted in Fig. II-2 illus-
trates the relation between the pressure inside a spherical soap bubble and its
radius of curvature; by attaching a manometer, AP could be measured directly.

An interesting set of shapes results if one forms a soap bubble or liquid
bridge between two cylindrical supports, as shown in Fig. II-4. In Fig. 1I-4a,
the upper support is open to the atmosphere so that the pressure is everywhere
the same, and AP must be zero. Although the surface appears to be curved, Eq.
I11-7 is not contradicted. The two radii of curvature indicated in Fig. II-4a, where
R, swings in the plane of the paper and R, swings in the plane perpendicular
to it, are equal in magnitude and opposite in sign because they originate on
opposite sides of the film; hence they cancel each other in Eq. II-7. This is
an example of a surface with zero mean curvature. Such surfaces are found in
other situations such as static “dewetting holes” (see Chapter XIII).
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(a)

(b)

Fig. II-4. (a) A cylindrical soap film; (b) manner of a collapse of a cylindrical soap
film of excessive length.

Instability of Cylindrical Columns. C. V. Boys, in his elegant little monograph of
1890 [3], discusses an important property of quasistatic cylindrical films that was first
studied in cylindrical columns of fluids by Lord Rayleigh in 1879. If the soap film in
Fig. II-4a were made to be cylindrical by adjusting the gas pressure inside, it, like a
cylindrical thread of fluid, would be unstable to surface waves whose length exceeds the
circumference of the cylinder. The column would contract at one end and bulge at the
other, as illustrated in Fig. II-4b, before breaking up into a smaller and larger bubble (or
drop) as shown in the photographs of a liquid stream in Fig. II-5 [4]. The mechanism
is associated with the nonzero curvature of the static state and the fact that fluctuations
establish capillary pressure gradients that drive the fluid away from the equilibrium. It is
now recognized that capillary breakup is a particularly simple example of the geometric
instability of states of static equilibrium in the presence of surface tension. For a general
description dealing with pendant and sessile drops, finite cylinders (capillary bridges)
and other capillary surfaces, see Michael [5]. A detailed discussion of the capillary
break up of jets, including several interesting practical applications, is given by Bogy
[6). The case of one liquid in a second, immiscible one is discussed in Refs. 6a and
7. A similar instability occurring in a thin annular coating inside a capillary can have
important consequences for capillary columns in chromatography [8].

Returning to equilibrium shapes, these have been determined both experimentally
and by solution of the Young-Laplace equation for a variety of situations. Examples
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Fig. II-5. Necking in a liquid stream. [Courtesy S. G. Mason (4).]

include the shape of a liquid plug in capillary tubes of various shapes of cross sections
(9) and of liquid bridges between spheres in a gravitational field [10]; see Refs. 11 to
12 for reviews.

4. The Treatment of Capillary Rise

A. Introductory Discussion

An approximate treatment of the phenomenon of capillary rise is easily made
in terms of the Young-Laplace equation. If the liquid completely wets the wall
of the capillary, the liquids surface is thereby constrained to lie parallel to the
wall at the region of contact and the surface must be concave in shape. The
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Fig. II-6. Capillary rise (capillary much magnified in relation to dish).

radii of curvature are defined in terms of an outward normal from the liquid,
thus, it follows from Eq. II-7 that the pressure is lower in the liquid than in the
gas phase. Small circular capillaries will have an approximately hemispherical
meniscus as illustrated in Fig. I1-6. Here the two radii of curvature are equal
to each other and to the radius of the capillary. Eq. II-7 then reduces to

AP - 27" (I1-8)

where r is the radius of the capillary. If h denotes the height of the meniscus
above a flat liquid surface (for which AP must be zero), then AP in Eq. II-
8 must also equal the hydrostatic pressure drop in the column of liquid in the
capillary. Thus AP = Ap gh, where Ap denotes the difference in density between
the liquid and gas phases and g is the acceleration due to gravity. Equation II-8
becomes

2
Ap gh= T (11-9)
or
@=-2_ (II-10)
Ap g

The quantity a, defined by Eq. II-10 is known as the capillary constant or cap-
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Fig. II-7. The meniscus in a capillary as a figure of revolution.

illary length. The factor of 2 in the definition of a arises from this particu-
lar boundary value problem; for many other situations the capillary length is
defined by a? = y/Apg (see Section X-6A).

Similarly, the identical expression holds for a liquid that completely fails to
wet the capillary walls, where there will be an angle of contact between the
liquid and the wall of 180°, a convex meniscus and a capillary depression of
depth A.

A slightly more general case is that in which the liquid meets the circu-
larly cylindrical capillary wall at some angle 0, as illustrated in Fig. II-7. If the
meniscus is still taken to be spherical in shape, it follows from simple geometric
consideration that R, = r/cos 8 and, since R, = R,, Eq. II-9 then becomes

Ap gh= w (M-11)

B. Exact Solutions to the Capillary Rise Problem

The exact treatment of capillary rise must take into account the deviation of
the meniscus from sphericity, that is, the curvature must correspond to the AP =
Ap gy at each point on the meniscus, where y is the elevation of that point above
the flat liquid surface. The formal statement of the condition is obtained by
writing the Young—Iaplace equation for a general point (x, y) on the meniscus,
with R, and R; replaced by the expressions from analytical geometry given in
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the footnote to Section II-2. We still assume that the capillary is circular in cross
section so that the meniscus shape is that of a figure of revolution; as indicated
in Fig. II-7, R, swings in the plane of paper, and R; in the plane perpendicular
to the paper. One thus obtains

ylf yf
Ap gy=v T+ y +x(1+y,2)|/2] (II-12)

where y' = dy/dx and y” = d2y/dx?, as in Eqgs. 1I-4 and II-5. A compact alter-
native form is

L

’E: (X sin ¢) (I1I-13)

_ 1
=3

where a bar denotes that the quantity has been made dimensionless by multi-
plication by v/2/a (see Refs. 10 and 13).

Equations II-12 and II-13 illustrate that the shape of a liquid surface obey-
ing the Young-Laplace equation with a body force is governed by differential
equations requiring boundary conditions. It is through these boundary condi-
tions describing the interaction between the liquid and solid wall that the contact
angle enters.

The total weight of the column of liquid in the capillary follows from Eq.
I-12:

W =2xrycos (II-14)

This is exact—see Problem II-8. Notice that Eq. II-14 is exactly what one would
write, assuming the meniscus to be “hanging” from the wall of the capillary and
its weight to be supported by the vertical component of the surface tension, vy
cos @, multiplied by the circumference of the capillary cross section, 2#r. Thus,
once again, the mathematical identity of the concepts of surface tension and
surface free energy is observed.

While Eq. II-14 is exact, its use to determine surface tension from capillary rise
experiments is not convenient. More commonly, one measures the height, A, to the
bottom of the meniscus.

Approximate solutions to Eq. II-12 have been obtained in two forms. The first, given
by Lord Rayleigh [13], is that of a series approximation. The derivation is not repeated
here, but for the case of a nearly spherical meniscus, that is, r << h, expansion around
a deviation function led to the equation

(II-15)

2o pe 012887 013127
- 3 h h?
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The first term gives the elementary equation (Eq. II-10). The second term takes into
account the weight of the meniscus, assuming it to be spherical (see Problem II-3). The
succeeding terms provide corrections for deviation from sphericity.

The general case has been solved by Bashforth and Adams [14], using an
iterative method, and extended by Sugden [15], Lane [16], and Paddy [17].
See also Refs. 11 and 12. In the case of a figure of revolution, the two radii
of curvature must be equal at the apex (i.e., at the bottom of the meniscus in
the case of capillary rise). If this radius of curvature is denoted by b, and the
elevation of a general point on the surface is denoted by z, where z = y — h,
then Eq. II-7 can be written

1 1 2y
T(—E+—R—2) —Ang'FT (II-16)

Thus, at z =0, AP = 2v/b, and at any other value of z, the change in AP is given
by Ap gz. Equation II-16 may be rearranged so as to involve only dimensionless
parameters

1 sing

AT =8> +2 (1I-17)

=
b

where R, has been replaced by its equivalent, x/ sin ¢, and the dimensionless
quantity 3 is referred to as the Bond number, given by

Apgh®  2b?
g = "f == (11-18)

where small Bond numbers indicate weak body forces or strong surface ten-
stons. This parameter is positive for oblate figures of revolution, that is, for a
sessile drop, a bubble under a plate, and a meniscus in a capillary. It is negative
for prolate figures, that is, for a pendant drop or a clinging bubble.

Bashforth and Adams obtained solutions to Eq. II-17 (with R, replaced by
the expression in analytical geometry), using a numerical integration proce-
dure (this was before the day of high-speed digital computers, and their work
required tremendous labor). Their results are reported as tables of values of x/b
and z/b for closely spaced values of 8 and of ¢. For a given 8 value, a plot
of z/b versus x/b gives the profile of a particular figure of revolution satisfy-
ing Eq. II-17. By way of illustration, their results for 8 = 80 are reproduced
(in abbreviated form) in Table II-1. Observe that x/b reaches a maximum at ¢
= 90°, so that in the case of zero contact angle the surface is now tangent to
the capillary wall and hence (x/b)max = r/b. The corresponding value of r/a
is/ given by (r/b) v/ /2. In this manner, Sugden compiled tables of r/b versus
r/a.
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TABLE II-1
Solution to Eq. II-17 for 8= 80
¢ (deg) x/b z/b ¢ (deg) x/b z/b

5 0.08159 0.00345 100 0.33889 0.17458
10 0.14253 0.01133 110 0.33559 0.18696
20 0.21826 0.03097 120 0.33058 0.19773
30 0.26318 0.05162 130 0.32421 0.20684
40 0.29260 0.07204 140 0.31682 0.21424
50 0.31251 0.09183 150 0.30868 0.21995
60 0.32584 0.11076 160 0.30009 0.22396
70 0.33422 0.12863 170 0.29130 0.22632
80 0.33872 0.14531
90 0.34009 0.16067

Lane improved on these tables with accurate polynomial fits to numerical
solutions of Eq. II-17 [16]. Two equations result; the first is applicable when
rla<?2

b/r = 1+[3327.9(r/a)* + 65.263(r/a)’ — 473.926(r/a)* + 663.569(r/a)’
— 300.032(r/a)° + 75.1929(r/a)” — 7.3163(r/a)*1/10* (II-19)

and another is to be employed when r/a 2> 2

r/b=(r/a)*? exp[-1.41222(r/a) + 0.66161 + 0.14681(a/r) + 0.37136(a/r)*]
(11-20)

The use of these equations is perhaps best illustrated by means of a numerical example.
In a measurement of the surface tension of benzene, the following data are obtained:

Capillary radius—0.0550 cm

Density of benzene—0.8785; density of air—0.0014 (both at 20°C);
hence Ap = 0.8771 g/ml

Height of capillary rise—1.201 cm

We compute a first approximation to the value of the capillary constant a; by means
of Eq. II-10 (a2 = rh). The ratio r/a, is then obtained and the corresponding value of
r/b is determined from Eq. II-19 or II-20; in the present case, a° = 1.201 x 0.0550
= 0.660; hence, r/a; = 0.0550/0.2570 = 0.2140. From Eq. II-19, r/b) is then 0.9850.
Since b is the value of R| and of R; at the bottom of the meniscus, the equation a? =
bh is exact. From the value of r/b|, we obtain a first approximation to b, that is, b; =
0.0550/0.9850 = 0.05584. This value of b gives a second approximation to a from a% =
bih = 0.05584 x 1.201 = 0.06706. A second round of approximations is not needed in
this case but would be carried out by computing r/az; then from Eq. II-19, r/b,, and
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0 on. The value of 0.06706 for a% obtained here leads to 28.84 dyn/cm for the surface
tension of benzene (at 20°).

The calculation may be repeated in SI units (see, however, Ref. 18). The radius is
now 5.50 X 104 m, the densities become 878.5 and 1.4 kg/m3, and h is 1.20 x 1072
m. We find a? = 6.60 x 108 m?; the dimensionless ratio r/a; remains unchanged. The
final approximation gives a% = 6.706 x 1076 m?, whence

_ _ : 1076
4= 779 807;‘ 6.706 x 107" _ 5 884 x 1072N/m(or J/m?) (1-21)

This answer could have been stated as 28.84 mN/m (or dyn/cm).

C. Experimental Aspects of the Capillary Rise Method

The capillary rise method is generally considered to be the most accurate
means to measure v, partly because the theory has been worked out with consid-
erable exactitude and partly because the experimental variables can be closely
controlled. This is to some extent a historical accident, and other methods now
rival or surpass the capillary rise one in value.

Perhaps the best discussions of the experimental aspects of the capillary rise
method are still those given by Richards and Carver [20] and Harkins and
Brown [21]. For the most accurate work, it is necessary that the liquid wet
the wall of the capillary so that there be no uncertainty as to the contact angle.
Because of its transparency and because it is wet by most liquids, a glass cap-
illary is most commonly used. The glass must be very clean, and even so it is
wise to use a receding meniscus. The capillary must be accurately vertical, of
accurately known and uniform radius, and should not deviate from circularity
in cross section by more than a few percent.

As is evident from the theory of the method, # must be the height of rise above a
surface for which AP is zero, that is, a flat liquid surface. In practice, then, 4 is measured
relative to the surface of the liquid in a wide outer tube or dish, as illustrated in Fig.
II-6, and it is important to realize that there may not be an appreciable capillary rise in
relatively wide tubes. Thus, for water, the rise is 0.04 mm in a tube 1.6 cm in radius,
although it is only 0.0009 mm in one of 2.7-cm radius.

The general attributes of the capillary rise method may be summarized as
follows. It is considered to be one of the best and most accurate absolute meth-
ods, good to a few hundredths of a percent in precision. On the other hand, for
practical reasons, a zero contact angle is required, and fairly large volumes of
solution are needed. With glass capillaries, there are limitations as to the alka-
linity of the solution. For variations in the capillary rise method, see Refs. 11,
12, and 22-26.



II-5 THE MAXIMUM BUBBLE PRESSURE METHOD 17
§. The Maximum Bubble Pressure Method

The procedure, as indicated in Fig. II-8, is to slowly blow bubbles of an inert gas in
the liquid in question by means of a tube projecting below the surface. As also illustrated
in the figure, for small tubes, the sequence of shapes assumed by the bubble during its
growth is such that, while it is always a section of a sphere, its radius goes through a
minimum when it is just hemispherical. At this point the radius is equal to that of the
tube and, since the radius is at a minimum, AP is at a maximum. The value of AP is
then given by Eq. II-3, where r is the radius of the tube. If the liquid wets the material
of the tube, the bubble will form from the inner wall, and r will then be the inner radius
of the tube. Experimentally, then, one measures the maximum gas pressure in the tube
such that bubbles are unable to grow and break away. Referring again to Fig. II-8, since
the tube is some arbitrary distance ¢ below the surface of the liquid, AP,y is given
by (Pmax — P;), where Ppax is the measured maximum pressure and P; is the pressure
corresponding to the hydrostatic head ¢.

If APmax is expressed in terms of the corresponding height of a column of the liquid,
that is, APmax = Ap gh, then the relationship becomes identical to that for the simple
capillary rise situation as given by Eq. II-10.

It is important to realize that the preceding treatment is the limiting one for suffi-
ciently small tubes and that significant departures from the limiting Eq. II-10 occur for
r/a values as small as 0.05. More realistically, the situation is as shown in Fig. II-9,
and the maximum pressure may not be reached until ¢ is considerably greater than 90°.

As in the case of capillary rise, Sugden [27] has made use of Bashforth’s and Adams’
tables to calculate correction factors for this method. Because the figure is again one
of revolution, the equation & = a2/b+ z is exact, where b is the value of R| = R; at the
origin and z is the distance of OC. The equation simply states that AP, expressed as
height of a column of liquid, equals the sum of the hydrostatic head and the pressure
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Fig. II-8. Maximum bubble pressure method.
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Fig. 11-9

change across the interface; by simple manipulation, it may be put in the form

1/2
F525 (9

where § is given by Eq. II-18 and X = a?/h. For any given value of r/a there will be
a series of values of /X corresponding to a series of values of 8 and of ¢. For each
assumed value of r/a, Sugden computed a series of values of r/b by inserting various
values of 8 in the identity r/b = (r/a)(Z/B)l/ 2 By means of the Bashforth and Adams
tables [14], for each 8 value used and corresponding r/b value, a value of z/b and
hence of r/X (by Eq. II-22) was obtained. Since r/X is proportional to the pressure in
the bubble, the series of values for a given r/a go through a maximum as g is varied.
For each assumed value, Sugden then tabulated this maximum value of r/X. His values
are given in Table II-2 as X/r versus r/a

The table is used in much the same manner as are Egs. II-19 and II-20 in the case
of capillary rise. As a first approximation, one assumes the simple Eq. II-10 to apply,
that is, that X = r; this gives the first approximation a4 to the capillary constant. From
this, one obtains 7/a; and reads the corresponding value of X/r from Table II-2. From
the derivation of X(X = a?/h), a second approximation a; to the capillary constant is
obtained, and so on. Some more recent calculations have been made by Johnson and
Lane [28].

The maximum bubble pressure method is good to a few tenths percent accuracy, does
not depend on contact angle (except insofar as to whether the inner or outer radius of the
tube is to be used), and requires only an approximate knowledge of the density of the
liquid (if twin tubes are used), and the measurements can be made rapidly. The method
is also amenable to remote operation and can be used to measure surface tensions of
not easily accessible liquids such as molten metals (29].

A pulsating bubble surfactometer, available commercially, allows one to measure the
dynamic surface tension in solutions [30, 31]. The bubble is expanded and contracted
to change its area by a factor of 1.5-2 at rates of 1-100 cycles per minute. Studying
hexadecanol in water, an important component of a lung surfactant replacement drug,
Franses and co-workers [30] illustrate the importance of the geometry of the measur-
ing technique in the study of surfactant dispersions. In the pulsating bubble technique,
hexadecanol particles rise to the surface enhancing flux and speeding the reduction in
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TABLE 11-2
Correction Factors for the Maximum Bubble Pressure Method (Minimum Values of
X/r for Values of r/a from 0 to 1.50)

rfa 000 001 002 003 004 005 006 007 008 009

00 10000 9999 9997 9994 9990 9984 9977 9968 9958 9946
0.1 09934 9920 9905 9888 9870 9851 9831 9809 9786 9762
0.2 9737 9710 9682 9653 9623 9592 9560 9527 9492 9456
0.3 9419 9382 9344 9305 9265 9224 9182 9138 9093 9047
0.4 9000 8952 8903 8853 8802 8750 8698 8645 8592 8538
0.5 8484 8429 8374 8319 8263 8207 8151 8094 RB8037 7979
0.6 7920 7860 7800 7739 7678 7616 7554 7493 7432 7372
0.7 7312 7252 7192 7132 7072 7012 6953 6894 6835 6776
0.8 6718 6660 6603 6547 6492 6438 6385 6333 6281 6230
0.9 6179 6129 6079 6030 5981 5933 5885 5838 5792 5747
1.0 5703 5659 5616 5573 5531 5489 5448 5408 5368 5329
1.1 5290 5251 5213 5176 5139 5103 5067 5032 4997 4962
1.2 4928 4895 4862 4829 4797 4765 4733 4702 4671 4641
1.3 4611 4582 4553 4524 4496 4468 4440 4413 4386 4359
1.4 4333 4307 4281 4256 4231 4206 4181 4157 4133 4109
1.5 4085

surface tension; in the pendant drop technique (see Section II-7A) the buoyant particles
are depleted at the interface.

6. Detachment Methods

Several convenient ways to measure surface tension involve the detachment
of a solid from the liquid surface. These include the measurement of the weight
in a drop falling from a capillary and the force to detach a ring, wire, or thin
plate from the surface of a liquid. In this section we briefly describe these meth-
ods and their use.

A. The Drop Weight Method

This is a fairly accurate and convenient method for measuring the surface
tension of a liquid—vapor or liquid-liquid interface. The procedure, in its simpli-
est form, is to form drops of the liquid at the end of a tube, allowing them to fall
into a container until enough have been collected to accurately determine the
weight per drop. Recently developed computer-controlled devices track indi-
vidual drop volumes to £ = 0.1 ul [32].

The method is a very old one, remarks on it having been made by Tate in
1864 (33), and a simple expression for the weight W of a drop is given by what
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Fig. II-10. High-speed photographs of a falling drop.

is known as Tate’s lawt :
W =2ary (I1-22)

Here again, the older concept of “surface tension” appears since Eq. II-22 is
best understood in terms of the argument that the maximum force available
to support the weight of the drop is given by the surface tension force per
centimeter times the circumference of the tip.

In actual practice, a weight W’ is obtained, which is less than the “ideal”
value W. The reason for this becomes evident when the process of drop forma-
tion is observed closely. What actually happens is illustrated in Fig. II-10. The
small drops arise from the mechanical instability of the thin cylindrical neck
that develops (see Section II-3); in any event, it is clear that only a portion of
the drop that has reached the point of instability actually falls—as much as 40%
of the liquid may remain attached to the tip.

The usual procedure is to apply a correction factor f to Eq. II-22, so that W’
is given by

W’ =2xryf

Harkins and Brown [21] concluded that f should be a function of the dimen-
sionless ratio r/a or, alternatively, of r/V'/3, where V is the drop volume. (See
Refs. 34 and 35 for a more up-to-date discussion.) This they verified exper-
imentally by determining drop weights for water and for benzene, using tips
of various radii. Knowing the values of ¢ from capillary rise measurements,
and thence the respective values of a, f could be determined in each case. The
resulting variation of f with /V'/3 has been fitted to a smoothing function to
allow tabulation at close intervals [36).

1The actual statement by Tate is “Other things being equal, the weight of a drop of liquid is
proportional to the diameter of the tube in which it is formed.” See Refs. 34 and 35 for some
discussion.
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It is desirable to use r/V!/3 values in the region of 0.6 to 1.2, where f is
varying most slowly. The correct value for the surface tension is then given by

mg

V= Zarf (I1-25)

It is to be noted that not only is the correction quite large, but for a given tip
radius it depends on the nature of the liquid. It is thus incorrect to assume that
the drop weights for two liquids are in the ratio of the respective surface tensions
when the same size tip is used. Finally, correction factors for r/V!/? < 0.3 have
been determined, using mercury drops [37].

In employing this method, an important precaution to take is to use a tip that has
been ground smooth at the end and is free from any nicks. In the case of liquids that
do not wet the tip, r is the inside radius. Volatile liquids are studied in a closed system
as described by Harkins and Brown [21] to minimize evaporation losses.

Since the drop volume method involves creation of surface, it is frequently
used as a dynamic technique to study adsorption processes occurring over
intervals of seconds to minutes. A commercial instrument delivers computer-
controlled drops over intervals from 0.5 sec to several hours [38, 39]. Accu-
rate determination of the surface tension is limited to drop times of a second
or greater due to hydrodynamic instabilities on the liquid bridge between the
detaching and residing drops [40].

An empirically determined relationship between drop weight and drop time
does allow surface tensions to be determined for small surface ages [41].

B. The Ring Method

A method that has been rather widely used involves the determination of the
force to detach a ring or loop of wire from the surface of a liquid. It is gener-
ally attributed to du Noiiy [42]. As with all detachment methods, one supposes
that a first approximation to the detachment force is given by the surface ten-
sion multiplied by the periphery of the surface detached. Thus, for a ring, as
illustrated in Fig. II-11,

Wtot = Wnng + 4WR’Y (II'26)

Harkins and Jordan [43] found, however, that Eq. II-26 was generally in
serious error and worked out an empirical correction factor in much the same
way as was done for the drop weight method. Here, however, there is one addi-
tional variable so that the correction factor f now depends on two dimensionless
ratios. Thus
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Fig. II-11. Ring method.

3
f= % = ( L 5) (I1-27)

where p denotes the “ideal” surface tension computed from Eq. II-26, and V is
the meniscus volume. The extensive tables of Harkins and Jordan, as recalcu-
lated by Huh and Mason [44] are summarized graphically in Fig. II-12, and it
is seen that the simple equation may be in error by as much as 25%. Additional
tables are given in Ref. 45.

Experimentally, the method is capable of good precision. Harkins and Jordan used
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Fig. II-12. The factor f in the range of R°/V = 0.4 to 4.5 and R/a = 30 to 80. (From
Ref, 44)
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a chainomatic balance to determine the maximum pull, but a popular simplified ver-
sion of the tensiometer, as it is sometimes called, makes use of a torsion wire and is
quite compact. Among experimental details to mention are that the dry weight of the
ring, which is usually constructed of platinum, is to be used, the ring should be kept
horizontal (a departure of 1° was found to introduce an error of 0.5%, whereas one of
2.1° introduced an error of 1.6%), and care must be taken to avoid any disturbance of
the surface as the critical point of detachment is approached. The ring is usually flamed
before use to remove surface contaminants such as grease, and it is desirable to use a
container for the liquid that can be overflowed so as to ensure the presence of a clean
liquid surface. Additional details are given in Ref. 46.

A zero or near-zero contact angle is necessary; otherwise results will be low. This
was found to be the case with surfactant solutions where adsorption on the ring changed
its wetting characteristics, and where liquid-liquid interfacial tensions were measured.
In such cases a Teflon or polyethylene ring may be used [47]. When used to study
monolayers, it may be necessary to know the increase in area at detachment, and some
calculations of this are available [48]. Finally, an alternative method obtains yy from the
slope of the plot of W versus z, the elevation of the ring above the liquid surface [49].

C. Wilhelmy Slide Method

The methods so far discussed have required correction factors to the respec-
tive “ideal” equations. Yet there is one method, attributed to Wilhelmy [50] in
1863, that entails no such corrections and is very simple to use.

The basic observation is that a thin plate, such as a microscope cover glass or
piece of platinum foil, will support a meniscus whose weight both as measured
statically or by detachment is given very accurately by the “ideal” equation
(assuming zero contact angle):

Wiot = Wplae +YP (II-28)

where p is the perimeter. The experimental arrangement is shown schematically
in Fig. II-13. When used as a detachment method, the procedure is essentially
the same as with the ring method, but Eq. II-28 holds to within 0.1% so that
no corrections are needed [51, 52]. A minor, omitted term in Eq. II-28 allows
for the weight of liquid directly under the plate (see Ref. 46).

It should be noted that here, as with capillary rise, there is an adsorbed film of vapor
(see Section X-6D) with which the meniscus merges smoothly. The meniscus is not
“hanging” from the plate but rather from a liquidlike film [53]. The correction for the
weight of such film should be negligible, however.

An alternative and probably now more widely used procedure is to raise the
liquid level gradually until it just touches the hanging plate suspended from a
balance. The increase in weight is then noted. A general equation is
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Fig. II-13. Apparatus for measuring the time dependence of interfacial tension (from
Ref. 54). The air and aspirator connections allow for establishing the desired level of
fresh surface. W denotes the Wilhelmy slide, suspended from a Cahn electrobalance
with a recorder output.

y cos 6 = -A% (I1-29)

where AW is the change in weight of (i.e., force exerted by) the plate when
it is brought into contact with the liquid, and p is the perimeter of the plate.
The contact angle, if finite, may be measured in the same experiment [54].
Integration of Eq. II-12 gives

2
( _) ~1-sin9 (I1-30)
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where, as illustrated in Fig. II-14, h is the height of the top of the meniscus
above the level liquid surface. Zero contact angle is preferred, however, if only
the liquid surface tension is of interest; it may help to slightly roughen the plate,
see Refs. 46 and 55.

As an example of the application of the method, Neumann and Tanner [54]
followed the variation with time of the surface tension of aqueous sodium dode-
cyl sulfate solutions. Their results are shown in Fig. II-15, and it is seen that a
slow but considerable change occurred.

A modification of the foregoing procedure is to suspend the plate so that it
is partly immersed and to determine from the dry and immersed weights the
meniscus weight. The procedure is especially useful in the study of surface
adsorption or of monolayers, where a change in surface tension is to be mea-
sured. This application is discussed in some detail by Gaines [57]. Equation
I1-28 also applies to a wire or fiber [58].

The Wilhelmy slide has been operated in dynamic immersion studies to mea-
sure advancing and receding contact angles [59] (see Chapter X). It can also
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Fig. II-15. Variation with time of aqueous sodium dodecyl sulfate solutions of various
concentrations (from Ref. 54). See Ref. 56 for later data with highly purified materials.
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be used with a trapezoidal pulse applied to the barrier at a fluid—fluid interface
to measure the transient response of the surface to a change in area [60].

7. Methods Based on the Shape of Static Drops or Bubbles

Small drops or bubbles will tend to be spherical because surface forces
depend on the area, which decreases as the square of the linear dimension,
whereas distortions due to gravitational effects depend on the volume, which
decreases as the cube of the linear dimension. Likewise, too, a drop of liquid
in a second liquid of equal density will be spherical. However, when gravita-
tional and surface tensional effects are comparable, then one can determine in
principle the surface tension from measurements of the shape of the drop or
bubble. The variations situations to which Eq. II-16 applies are shown in Fig.
I1-16.

The general procedure is to form the drop or bubble under conditions such
that it is not subject to disturbances and then to measure its dimensions or
profile from a photograph or with digital image processing of video images
(see Refs. 61, 62). The image analysis has recently been automated [62] to
improve accuracy over manual analysis. In axlsymmetrlc drop shape analysis
of surface tension, the pendant drop geometry is preferable due to the ease with
which large drops can be made axisymmetric. Sessile drops, however, are useful
for studies of contact angles [63, 64] (see Chapter X). The greatest accuracy
is achieved with fewer very accurate points on the drop surface rather than a
large number of less reliable points [65].

®

(<) (d)

Fig. II-16. Shapes of sessile and hanging drops and bubbles: (a) hanging drop; (b)
sessile drop; (c) hanging bubble; (d) sessile bubble.
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A. Pendant Drop Method

A drop hanging from a tip (or a clinging bubble) elongates as it grows larger
because the variation in hydrostatic pressure AP eventually becomes apprecia-
ble in comparison with that given by the curvature at the apex. As in the case
of a meniscus, it is convenient to write Eq. II-12 in the form of Eq. II-17, where
in the present case, the dimensionless parameter 3 is negative. A profile calcu-
lated from Eq. II-17 for the case of 8 = —-0.45 is given in Table II-3 [66]. The
best value of 3 for a given drop can be determined by profile matching (see
further below), but some absolute quantity such as b must also be measured in
order to obtain an actual y value.

An aiternative to obtaining 3 directly involves defining some more convenient
shape-dependent function, and an early but still very practical method is the fol-
lowing. We define a shape-dependent quantity as S = d;/d,; as indicated in Fig.
II-16, d, is the equatorial diameter and d; is the diameter measured at a distance
d. up from the bottom of the drop. The hard-to-measure size parameter b in Eq.
II-17 is combined with 3 by defining the quantity H = —3(d,/b)*. Thus

_ -Apgh?  -Apgdl  Apgd?
g8 B(d./b)* H

(11-31)

The relationship between the shape-dependent quantity H and the experimen-
tally measurable quantity S originally was determined empirically {66], but a
set of quite accurate 1/H versus § values were later obtained by Niederhauser
and Bartell [67] (see also Refs. 34 and 68) and by Stauffer [69].

A set of pendant drop profiles is shown in Fig. I1-17 as an illustration of the
range of shapes that may be observed. It has been pointed out that for practical
reasons, the size of the tip from which the drop is suspended should be such
that r/a is about 0.5 or less [66].

A modern alternative procedure involves computer matching of the entire
drop profile to a best fitting theoretical curve; in this way the entire profile
is used, rather than just d; and d,, so that precision is increased. Also, drops
whose d; is not measurable (how does this happen?) can be used. References
61 and 71-74 provide examples of this type of approach.

The automated pendant drop technique has been used as a film balance to
study the surface tension of insoluble monolayers [75] (see Chapter IV). A
motor-driven syringe allows changes in drop volume to study surface tension
as a function of surface areas as in conventional film balance measurements.
This approach is useful for materials available in limited quantities and it can
be extended to study monolayers at liquid-liquid interfaces [76].

B. Sessile Drop or Bubble Method

The cases of the sessile drop and bubble are symmetrical, as illustrated in
Fig. II-16. The profile is also that of a meniscus; 8 is now positive and, as an
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TABLE II-3
Solutions to Eq. II-17 for 8 = —-0.45
¢? x/b z/b
0.099944 0.099834 0.004994
0.199551 0.198673 0.019911
0.298488 0.295547 0.044553
0.396430 0.389530 0.078600
0.493058 0.479762 0.121617
0.588070 0.565464 0.173072
0.681175 0.645954 0.232352
0.772100 0.720657 0.298779
0.860590 0.789108 0.371635
0.946403 0.850958 0.460175
1.029319 0.905969 0.533649
1.109130 0.954013 0.621322
1.185644 0.995064 0.712480
1.258681 1.029190 0.806454
1.328069 1.056542 0.902619
1.393643 1.077347 1.000413
1.455242 1.091895 1.099333
1.512702 1.100530 1.198946
1.565856 1.103644 1.298886
1.614526 1.101667 1.398856
1.658523 1.095060 1.498630
1.697641 1.084311 1.598044
1.731653 1.069933 1.697000
1.760310 1.052460 1.795458
1.783338 1.032445 1.893432
1.800443 1.010466 1.990986
1.811310 0.987123 2.088223
1.815618 0.963039 2.185279
1.813050 0.938868 2.282314
1.803321 0.915293 2.379495
1.786207 0.893023 2.476982
1.761593 0.872791 2.574912
1.729517 0.855344 2.673373
1.690226 0.841424 2.772393

“The angle ¢ is in units of 360/2x or 57.295°.

example, the solution to Eq. II-17 for 8 = 0.5 is given in Ref. 77 (note also
Table II-1).

The usual experimental situation is that of a sessile drop and, as with the
pendant drop, it is necessary to determine a shape parameter and some abso-
lute length. Thus § may be determined by profile fitting, and z, measured, where
Z, is the distance from the plane at ¢ = 90 to the apex. If the drop rests with
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Fig. 1I-17. Pendant drops: (a) water; (b) benzene/water; (c) formamide. The measure-
ments were at 21°. [Courtesy A. W. Neumann (see also Ref. 70).]

a contact angle of less than 90°, there is no z, and, instead, the control angle
and the total height of the drop can be measured. Some of the specific proce-
dures that have been used are found in Refs. 71-74 and 77-79. The sessile drop
method has been used to follow surface tension as a function of time, as with
sodium laurate solutions [80], the surface tension of molten metals [81-83] and
liquid-liquid interfacial tensions [70, 73].

The case of very large drops or bubbles is easy because only one radius of curvature
(that in the plane of the drawings) is considered. Equation II-12 then becomes

{4

Apg'y =% (1 +y,2)3/2



30 II CAPILLARITY

or
2y _ _pdp/dy
a? " (1+pPPP i)
where p = dy/dx. Integration gives
y? ~
? = -(1—".—’,3'5'172— + const (11'33)

Since h denotes the distance from the apex to the equatorial plane, then aty = &, p =
oo, and Eq. II-33 becomes

P S
Py Rl ey

Furthermore, at y = 0, p = 0, from which it follows that A2/a? = 1, or h = a,

_ Ap gh?

> (I1-34)

This very simple result is independent of the value of the contact angle because the
configuration involved is only that between the equatorial plane and the apex.

Very small sessile drops have a shape that depends on the line tension along
the circular contact line; if large enough it induces a dewetting transition detach-
ing the drop from the surface [84].

C. Sources of Other Deformed Shapes

The discussion so far has been of interfaces in a uniform gravitational field.
There are several variants from this situation, some of which are useful in the
measurement of liquid-liquid interfacial tensions where these are very small.
Consider the case of a drop of liquid A suspended in liquid B. If the density of
A is less than that of B, on rotating the whole mass, as illustrated in Fig. II-18,
liquid A will go to the center, forming a drop astride the axis of revolution. With
increasing speed of revolution, the drop of A elongates, since centrifugal force
increasingly opposes the surface tensional drive toward minimum interfacial
area. In brief, the drop of A deforms from a sphere to a prolate ellipsoid. At
a sufficiently high speed of revolution, the drop approximates to an elongated
cylinder.

The general analysis, while not difficult, is complicated; however, the limit-
ing case of the very elongated, essentially cylindrical drop is not hard to treat.
Consider a section of the elongated cylinder of volume V (Fig. II-18b). The
centrifugal force on a volume element is w?r Ap, where w is the speed of rev-
olution and Ap the difference in density. The potential energy at distance 7 from
the axis of revolution is then w2r2Ap/2, and the total potential energy for the
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Fig. II-18. Illustration of the rotating drop method.
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cylinder of length [ is I [* (w?r? Ap/2)2wrdr = mw? Ap rjl/4. The interfacial
free energy is 2zryly. The total energy is thus

Tw? Ap r3l wXAp rdV. 2Vy
E = =
2 + 2mroly 7 + o
since V = wr¢l. Setting dE/dr; = 0, we obtain
2 Ap 1
. "’_‘;"_1 (11-35)

Equation II-35 has been called Vonnegut’s equation [85].

Princen and co-workers have treated the more general case where w is too
small or 4 too large to give a cylindrical profile [86] (see also Refs. 87 and 88).
In such cases, however, a correction may be needed for buoyancy and Coriolis
effects [89]; it is best to work under conditions such that Eq. II-35 applies. The
method has been used successfully for the measurement of interfacial tensions
of 0.001 dyn/cm or lower (90, 91].

Small interfacial tensions may also be measured from the deformation of
a drop suspended in a liquid having a similar density {92]. The distortion of
drops and bubbles placed in shearing flows of liquids was first investigated
theoretically by G. 1. Taylor in 1934, who also conducted a series of careful
experiments. He established that the parameter measuring the distorting forces
due to the flow relative to the interfacial tension opposing the distortion is a
capillary number, Ca = Upn /vy, where U is the fluid velocity, u the viscosity, and
v the interfacial tension. For unbounded simple shear flow, U is replaced by
Ga, where G is the shear rate and a the radius of the undistorted drop. Taylor
carried out a perturbation expansion for small Ca, showing the first effects of
shape distortion. Many theoretical and experimental studies have extended his
work to finite internal viscosity, more general flows, and large deformation or
breakup. This work is reviewed by Rallison [93] and Stone {93a]. An initially
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spherical drop will deform to a spheroid of major axis £ and minor axis b; the
degree of deformation is defined by D = (¢ — b)/(£ + b). The deformation of a
drop of radius r in an electric field E is

_ O¢gerE?

D e

(I1-36)

where ¢ is the permittivity of vacuum (8.854 x 10712 C2N~'m™2, and e is the
dielectric constant of the outer fluid (that for the drop is assumed to be high)
[94-96]. This effect was noted by Lord Kelvin [97]. Finally, the profiles of
nonaxisymmetric drops including inclined pendant [98] and sessile [99] drops
have been calculated.

In the converse situation free of gravity, a drop assumes a perfectly spherical shape.
At one point, the U.S. Space program tested this idea with the solidification of ball
bearings from molten metal drops in microgravity conditions.

An interesting application of capillarity and drops in fields occurs in inkjet print-
ing technology. In this process, illustrated in Fig. II-19, ink resides in a small square
chamber with a meniscus balanced at the exit orifice by the pressure in the reservoir
and capillary forces. In the wall opposite the orifice is a thin film resistor that, upon
heating at 108°C/sec, causes rapid growth of a vapor bubble that ejects a drop of ink
through the orifice (Fig. II-19b). The chamber refills and the process is repeated. The
newest printers achieve a repetition frequency of 8000 Hz by carefully controlling the
refilling process [100].

() (b) (e}

Fig. II-19. The drop ejection process in an inkjet printer: (a) bubble nucleation; (b)
bubble growth and drop ejection; (c) refill. [From J. H. Bohérquez, B. P. Canfield,
K. J. Counan, F. Drogo, C. A. E. Hall, C. L. Holstun, A. R. Scandalis, and M. E.
Shepard, Hewlett-Packard J. 45(1), 9-17 (Feb. 1994). Copyright 1994, Hewlett-Packard
Company. Reproduced with permission.}
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8. Dynamic Methods of Measuring Surface Tension

The profound effect of surface active agents on the surface tension of a
liquid motivate the study of their adsorption at liquid surfaces through the
dynamic measurement of surface tension Recent computer-controlled devices
have enabled such studies via the pulsating bubble method described in Section
I1-5 and the drop weight technique (Section II-6A). These techniques are gener-
ally limited to the study of surface tensions varying over time periods of seconds
to minutes. It is of interest to study surface aging and relaxation effects on a
very short time scale, and for this more rapid dynamic methods are needed. Two
good reviews of dynamic surface tension techniques by Miller and co-workers
and by Chang and Franses appear in Refs. 101 and 102. We briefly describe
three of these techniques below.

A. Flow Methods

A jet emerging from a noncircular orifice is mechanically unstable, not only with
respect to the eventual breakup into droplets discussed in Section II-3, but, more imme-
diately, also with respect to the initial cross section not being circular. Oscillations
develop in the jet since the momentum of the liquid carries it past the desired circular
cross section. This is illustrated in Fig. II-20.

The mathematical treatment was first developed by Lord Rayleigh in 1879, and a
more exact one by Bohr has been reviewed by Sutherland [103], who gives the formula

4pv2(1 + 3762 /24r%)

Yapp = 6rA2(1 + 572r2/3A2) 37

where p is the density of the liquid, v is the volume velocity, \ is the wavelength, r
is the sum of the minimum and maximum half-diameters, and b is their difference.
The required jet dimensions were determined optically, and a typical experiment would
make use of jets of about 0.03 cm in size and velocities of about 1 cm?/sec, giving A
values of around 0.5 cm. To a first approximation, the surface age at a given node is

Section A-A

0

Fig. II-20. Oscillations in an elliptical jet.
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Fig. II-21. Surface tension as a function of age for 0.05 g/100 cm? of sodium di(2-
ethylhexyl)sulfosuccinate solution determined with various types of jet orifices [109].

just the distance from the orifice divided by the linear jet velocity and, in the preceding
example, would be about 1 msec per wavelength.

It was determined, for example, that the surface tension of water relaxes to its equi-
librium value with a relaxation time of 0.6 msec [104]. The oscillating jet method has
been useful in studying the surface tension of surfactant solutions. Figure II-21 illus-
trates the usual observation that at small times the jet appears to have the surface tension
of pure water. The slowness in attaining the equilibrium value may partly be due to the
times required for surfactant to diffuse to the surface and partly due to chemical rate
processes at the interface. See Ref. 105 for similar studies with heptanoic acid and Ref.
106 for some anomalous effects.

For times below about 5 msec a correction must be made to allow for the fact that
the surface velocity of the liquid in the nozzle is zero and takes several wavelengths
to increase to the jet velocity after emerging from the nozzle. Correction factors have
been tabulated [107, 108]; see also Ref. 109.

The oscillating jet method is not suitable for the study of liquid-air interfaces whose
ages are in the range of tenths of a second, and an alternative method is based on the
dependence of the shape of a falling column of liquid on its surface tension. Since the
hydrostatic head, and hence the linear velocity, increases with h, the distance away from
the nozzle, the cross-sectional area of the column must correspondingly decrease as a
material balance requirement. The effect of surface tension is to oppose this shrinkage
in cross section. The method is discussed in Refs. 110 and 111. A related method makes
use of a falling sheet of liquid [112].

Another oscillatory method makes use of a drop acoustically levitated in a
liquid. The drop is made to oscillate in shape, and the interfacial tension can
be calculated from the resonance frequency [113].

B. Capillary Waves

The wavelength of ripples on the surface of a deep body of liquid depends
on the surface tension. According to a formula given by Lord Kelvin [97],
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where v is the velocity of propagation, A is the wavelength, and 7 is the period
of the ripples. For water there is a minimum velocity of about 0.5 mph (mi/hr)
for A = 1.7 ¢cm; for A = 0.1 c¢m, it is 1.5 mph, whereas for A = 10° cm, it is 89
mph!

Experimentally, the waves are measured as standing waves, and the situation
might be thought to be a static one. However, individual elements of liquid in
the surface region undergo a roughly circular motion, and the surface is alter-
nately expanded and compressed. As a consequence, damping occurs even with
a pure liquid, and much more so with solutions or film-covered surfaces for
which transient surface expansions and contractions may be accompanied by
considerable local surface tension changes and by material transport between
surface layers. Hansen has reviewed the subject [114]. A more detailed dis-
cussion is deferred to Chapter IV, but it should be mentioned here that capil-
lary waves are spontaneously present because of small temperature and hence
density fluctuations. These minute waves (about 5 A amplitude and 0.1 mm
wavelength) can be detected by laser light-scattering techniques. The details
are beyond the scope of this text; they are discussed in Refs. 115-118. Both
liquid-air and liquid-liquid surface tensions can be measured, as well as the rate
of damping of waves.

C. Maximum Bubble Pressure Method

A recent design of the maximum bubble pressure instrument for measure-
ment of dynamic surface tension allows resolution in the millisecond time frame
[119, 120]. This was accomplished by increasing the system volume relative
to that of the bubble and by using electric and acoustic sensors to track the
bubble formation frequency. Miller and co-workers also assessed the hydrody-
namic effects arising at short bubble formation times with experiments on very
viscous liquids [121]. They proposed a correction procedure to improve reli-
ability at short times. This technique is applicable to the study of surfactant and
polymer adsorption from solution [101, 120].

9. Surface Tension Values as Obtained by Different Methods

The surface tension of a pure liquid should and does come out to be the
same irrespective of the method used, although difficulties in the mathematical
treatment of complex phenomena can lead to apparent discrepancies. In the case
of solutions, however, dynamic methods, including detachment ones, often tend
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TABLE II-4
Surface Tension Values?
"
(dyn/cm
Liquid Temperature mN/m)
Liquid-Vapor Interfaces
Water? 20°C 72.94
21.5°C 72.75
25°C 72.13
Organic compounds
Methylene iodide® 20°C 67.00
21.5°C 63.11
Glycerine? 24°C 62.6
20°C 48.09
Ethylene glycol® 25°C 47.3
40°C 46.3
Dimethy] sulfoxide/ 20°C 43.54
Propylene carbonatef 20°C 41.1
1-Methyl naphthalene” 20°C 38.7
Dimethyl aniline’ 20°C 36.56
Benzene” 20°C 28.88
30°C 27.56
Toluene? 20°C 28.52
Chloroform” 25°C 26.67
Propionic acid® 20°C 26.69
Butyric acid® 20°C 26.51
Carbon tetrachloride? 25°C 26.43
Butyl acetate/ 20°C 25.09
Diethylene glycol® 20°C 30.9
Nonane® 20°C 22.85
Methano!? 20°C 22.50
Ethanol? 20°C 22.39
30°C 21.55
Octane® 20°C 21.62
Heptane? 20°C 20.14
Ether? 25°C 20.14
Perfluoromethylcyclohexane® 20°C 15.70
Perfluoroheptane® 20°C 13.19
Hydrogen sulfide’ 20°C 12.3
Perfluoropentane” 20°C 9.89
Dodecane88 22°C 25.44
Polydimethyl siloxane, MW
3900/ f 20°C 20.47

20°C 21.01
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Y
(dyn/cm
Liquid Temperature mN/m)
Liquid—Vapor Interfaces
Low-boiling substances
4He™ 1K 0.365
Hy" 20 K 2.01
Dyn 20K 3.54
N,° 75 K 9.41
Ar° 90 K 11.86
CH,? 110 K 13.71
F,? 85 K 14.84
0,b 77K 16.48
Metals
Hg® 20°C 486.5
o @) 485.5
30°C 484.5
Na® 130°C 198
Ba' 720°C 226
Sn¥ 332°C 543.8
Salts
NaCl” 1073°C 115
KCIO;? 368°C 81
KNCS? 175°C 101.5
CoHg” 180.6 K 16.63
Xed 163 K 18.6
N,0” 182.5 K 24.26
ClL? -30°C 25.56
NOCI? -10°C 13.71
Bry” 20°C 31.9
Ag’ 1100°C 878.5
Cu® mp 1300
Ti* 1680°C 1588
Pt mp 1800
Fe® mp 1880
NaNQ; 4 308°C 116.6
K2Cry 072 397°C 129
Ba(NO3), %4 595°C 134.8

to give high values. Padday and Russell discuss this point in some detail [122].
The same may be true of interfacial tensions between partially miscible liquids.

The data given in Table II-4 were selected with the purpose of providing a
working stock of data for use in problems as well as a convenient reference to
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TABLE II-4 (Continued)

¥
(dyn/cm
Liquid Temperature mN/m)
Liquid-Liquid Interface

Liquid 1: water
n-Butyl alcohol?? 20°C 1.8
Ethyl acetate®? 20°C 6.8
Heptanoic acid“c 20°C 7.0
Benzaldehyde?? 20°C 15.5
Liquid 1: mercury
Water?? 20°C 415

25°C 416
Ethanol‘¢ 20°C 389
n-Hexane®¢ 20°C 378
Liquid 1: fluorocarbon polymer
Benzene®® I5°C 7.8
Liquid 1: diethylene glycol
n-Heptane/ 20°C 10.6
Nitrobenzene?® 20°C 25.2
Benzene‘© 20°C 35.0
Carbon tetrachloride®® 20°C 45.0
n-Heptane© 20°C 50.2
n-Heptane®* 20°C 378
Benzene?? 20°C 357
Water®® 25°C 57
n-Decanef 20°C 11.6

9Extensive compilations are given by J. J. Jasper, J. Phys. Chem. Ref.
Data, 1, 841 (1972) and G. Korosi and E. sz. Kovats, J. Chem. Eng. Data,
26, 323 (1981).

’A. G. Gaonkar and R. D. Neuman, Colloids & Surfaces, 27, 1 (1987)
(contains an extensive review of the literature); V. Kayser, J. Colloid Inter-
face Sci., 56, 622 (1972).

‘R. Grzeskowiak, G. H. Jeffery, and A. 1. Vogel, J. Chem. Soc., 1960,
4728.

dRef. 61.

‘Ref. 41.

FH. L. Clever and C. C. Snead, J. Phys. Chem., 67, 918 (1963),

gM. K. Bemnett, N. L. Jarvis, and W. A. Zisman, J. Phys. Chem., 66, 328
(1962).

hA. N. Gent and J. Schultz, J. Adhes., 3, 281 (1972).

‘Ref. 20.

/1. B. Griffin and H. L. Clever, J. Chem. Eng. Data, 5, 390 (1960).

*G. L. Gaines, Jr., and G. L. Gaines III, J. Colloid Interface Sci., 63, 394
(1978).
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TABLE II-4 (Continued)

IC. S. Herrick and G. L. Gaines, Jr., J. Phys. Chem., 77, 2703 (1973).

mK. R. Atkins and Y. Narahara, Phys. Rev., 138, A437 (1965).

"V. N. Grigor’ev and N. S. Rudenko, Zh. Eksperim. Teor. Fiz., 47, 92
(1964) (through Chem. Abstr.,, 61, 12669¢ (1964)).

°D. Stansfield, Proc. Phys. Soc., 72, 854 (1958).

PA. J. Leadbetter, D. J. Taylor, and B. Vincent, Can. J. Chem., 42, 2930
(1964).

9A. J. Leadbetter and H. E. Thomas, Trans. Faraday Soc., 61, 10 (1965).

"M. S. Chao and V. A. Stenger, Talanta, 11, 271 (1964) (through Chem.
Abstr., 60, 48298 (1964)).

*C. C. Addison, W. E. Addison, D. H. Kerridge, and J. Lewis, J. Chem.
Soc., 1955, 2262.

!C. C. Addison, J. M. Coldrey, and W. D. Halstead, J. Chem. Soc., 1962,
3868.

“J. A. Cahill and A. D. Kirshenbaum, J. Inorg. Nucl. Chem., 26, 206
(1964).

YI. Lauerman, G. Metzger, and F. Sauerwald, Z. Phys. Chem., 216, 42
(1961).

"B. C. Allen, Trans. Met. Soc. AIME, 227, 1175 (1963).

*J. Tille and J. C. Kelley, Brit. J. Appl. Phys., 14(10), 717 (1963).

7). D. Patdey, H. R. Chaturvedi, and R. P. Pandey, J. Phys. Chem., 85,
1750 (1981).

2]J. P. Frame, E. Rhodes, and A. R. Ubbelohde, Trans. Faraday Soc., 55,
2039 (1959).

44, C. Addison and J. M. Coldrey, J. Chem. Soc., 1961, 468.

bbp. J. Donahue and F. E. Bartell, J. Phys. Chem., 56, 480 (1952).

L. A. Girifalco and R. J. Good, J. Phys. Chem., 61, 904 (1957).

ddg B, Butler, J. Phys. Chem., 67, 1419 (1963).

¢F. M. Fowkes and W. M. Sawyer, J. Chem. Phys., 20, 1650 (1952).

f1Q. S. Bhatia, J. K. Chen, J. T. Koberstein, J. E. Sohn, and J. A. Emer-
son, J. Colloid Interface Sci., 106, 353 (1985).

88P, Cheng, D. Li, L. Boruvka, Y. Rotenburg, and A. W. Neumann, Col-
loids & Surf., 43, 151 (1990).

surface tension values for commonly studied interfaces. In addition, a number
of values are included for uncommon substances or states of matter (e.g., molten
metals) to provide a general picture of how this property ranges and of the extent
of the literature on it. While the values have been chosen with some judgment,
they are not presented as critically selected best values. Finally, many of the
references cited in the table contain a good deal of additional data on surface
tensions at other temperatures and for other liquids of the same type as the one
selected for entry in the table. A useful empirical relationship for a homologous
series of alkane derivatives is [123]
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k

Y =Yoo — -A—l-2/—3' (11-39)

Series of the type C,Hy,, X were studied. For X = CH,Cl, k and .. were 304
and 37.44 dyn/cm, respectively, and for X = COOCH3, k and y.. were 254 and
35.47 dyn/cm, again respectively.

10. Problems

1. Derive Eq. II-3 using the “surface tension” point of view. Suggestion: Consider
the sphere to be in two halves, with the surface tension along the join balancing the
force due to AP, which would tend to separate the two halves.

2. The diagrams in Fig. II-22 represent capillaries of varying construction and
arrangement. The diameter of the capillary portion is the same in each case, and all
of the capillaries are constructed of glass, unless otherwise indicated. The equilibrium
rise for water is shown at the left. Draw meniscuses in each figure to correspond to
(a) the level reached by water rising up the clean, dry tube and (b) the level to which
the water would recede after having been sucked up to the end of the capillary. The
meniscuses in the capillary may be assumed to be spherical in shape.

3. Show that the second term in Eq. 1I-15 does indeed correct for the weight of the
meniscus. (Assume the meniscus to be hemispherical.)

4, Calculate to 1% accuracy the capillary rise for water at 20°C in a 1.2-cm-diameter
capillary.

5. Referring to the numerical example following Eq. II-18, what would be the sur-
face tension of a liquid of density 1.423 g/cm? (2-bromotoluene), the rest of the data
being the same?

6. Derive Eq. II-5.

7. Derive Eq. 1I-14 from an exact analysis of the meniscus profile. Hint: Start with
Eq. II-12 and let p = ', where y” = pdp/dy. The total weight W is then given by W
= 2Apgr [y xydx.

8. Derive Eq. II-13. Hint: Use Egs. II-4, II-5, and II-7 and note an alternative state-

ment for R;.
“1 |
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Fig. I1-23.

9. Obtain Eq. II-14 from Eq. II-11. It is interesting that the former equation is exact
although it has been obtained in this case from Eq. II-11, which is approximate.

10. The surface tension of a liquid that wets glass is measured by determining the
height Ah between the levels of the two meniscuses in a U-tube having a small radius
r1 on one side and a larger radius r; on the other. The following data are known: Ak
=1.90%x 102 m, r; = 1.00 x 107> m, r; = 1.00 x 1072 m, p = 950 kg/m> at 20°C.
Calculate the surface tension of the liquid using (a) the simple capillary rise treatment
and (b) making the appropriate corrections using Eqgs. II-19 and II-20.

11. The surface tension of a liquid is determined by the drop weight method. Using
a tip whose outside diameter is 5 x 10~> m and whose inside diameter is 2.5 x 10~
m, it is found that the weight of 20 drops is 7 x 10~4 kg. The density of the liquid is
982.4 kg/m?, and it wets the tip. Using r/V'/3, determine the appropriate correction
factor and calculate the surface tension of this liquid.

12. Derive the equation for the capillary rise between parallel plates, including the
correction term for meniscus weight. Assume zero contact angle, a cylindrical meniscus,
and neglect end effects.

13. Derive, from simple considerations, the capillary rise between two parallel plates
of infinite length inclined at an angle of @ to each other, and meeting at the liquid
surface, as illustrated in Fig. II-23. Assume zero contact angle and a circular cross
section for the meniscus. Remember that the area of the liquid surface changes with its
position.

14, The following values for the surface tension of a 1074M solution of sodium
oleate at 25°C are reported by various authors: (a) by the capillary rise method, vy
= 43 mN/m; (b) by the drop weight method, ¥ = 50 mN/m; and (c) by the sessile
drop method, v = 40 mN/m. Explain how these discrepancies might arise. Which value
should be the most reliable and why?

15. Derive Eq. II-30.

16. Molten naphthalene at its melting point of 82°C has the same density as does
water at this temperature. Suggest two methods that might be used to determine the
naphthalene-water interfacial tension. Discuss your suggestions sufficiently to show that
the methods will be reasonably easy to carry out and should give results good to 1%
or better.

17. Using Table II-3, calculate S and 1/H for 8 = —0.45 for a pendant drop. Hint:
x/b in the table is at a maximum when x is the equatorial radius.
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18. This problem may be worked as part (a) only or as part (b) only; it is instructive,
however, to work all three parts.

(@) A drop of liquid A, of density 1.01 g/cm3, rests on a flat surface that it does not
wet but contacts with an angle 6 (measured in the liquid phase). The height of the drop
above the surface is 0.22 cm, and its largest diameter is 0.67 cm. Its shape corresponds
to B = 80 (see Table II-1). Calculate the surface tension of liquid A and its value of .

(b) Plot the profile for the drop of liquid A as z (in cm) versus x (in cm).

19. Use the table in Ref. 36 to calculate f of Eq. II-25 for r/ v!1/3 values of 0.40,
0.80, and 1.20.

20. Show how Eq. II-28 should be written if one includes the weight of liquid
directly under the plate.

21. In a rotating drop measurement, what is the interfacial tension if the two liquids
differ in density by 0.2 g/cm?, the speed of rotation is 60 rpm, the volume of the drop
is 0.4 cm>, and the length of the extended drop is 6.5 cm?

22. For a particular drop of a certain liquid of density 0.83, 8 is —0.45 and d, is
0.72 cm. (a) Calculate the surface tension of the drop and (&) calculate the drop profile
from apex to the tip, assuming 7:/a to be 0.55, where r; is the radius of the tip.

23. The surface tension of mercury is 471 dyn/cm at 24.5°C. In a series of measure-
ments [37] the following drop weight data were obtained, (diameter of tip in centimeters,
weight of drop in grams): (0.05167, 0.06407), (0.10068, 0.11535), (0.13027, 0.14245).
Calculate the corresponding f and r/Vl /3 values.

24. Johnson and Lane [28] give the equation for the maximum bubble pressure:

421
r+

2
h= — + — —
+3 6 a

r

For a certain liquid, a2 = 0.0780 cm? and r = 0.160 cm. Calculate, using the equation,
the values of X/r and r/a and compare with the X/r value given by Table II-2.

25. According to the simple formula, the maximum bubble pressure is given by
Prax = 2vv/r where r is the radius of the circular cross-section tube, and P has been
corrected for the hydrostatic head due to the depth of immersion of the tube. Using the
appropriate table, show what maximum radius tube may be used if v computed by the
simple formula is not to be more than 5% in error. Assume a liquid of y = 25 dyn/cm
and density 0.98 g/cm®.

26. A liquid of density 2.0 g/cm® forms a meniscus of shape corresponding to 8
= 80 in a metal capillary tube with which the contact angle is 30°. The capillary rise
is 0.063 cm. Calculate the surface tension of the liquid and the radius of the capillary,
using Table II-1.

27. Equation II-30 may be integrated to obtain the profile of a meniscus against a
vertical plate; the integrated form is given in Ref. 53. Calculate the meniscus profile for
water at 20°C for (@) the case where water wets the plate and (b) the case where the
contact angle is 40°. For (b) obtain from your plot the value of h, and compare with
that calculated from Eq. II-28. [Hint: Obtain a? from II-15.]

28. An empirical observation is if one forms drops at a constant flow rate such that
the drop time is ¢, then the observed drop mass, M(¢), varies with ¢ according to the
equation M(t) = M. + st-3/% where M.. is the “equilibrium” value and s is a 9.44s
+ 5.37. Using these two relationships, it is possible to determine surface tension as a
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function of surface age by means of the drop weight method. Combine these equations
to obtain one relating M~ (¢) and ¢, where M..(?) is the equilibrium drop mass (and the
one to which Eq. II-25 applies) and surface age ¢. For a particular surfactant solution,
the observed drop mass is 80.4 mg for drops formed very slowly and 125.7 mg for drops
formed every 2 sec. The radius of the tip used is 5 mm and the density of the solution
was 1.03 g/cm?. Calculate the equilibrium surface tension and that for a surface age of
2 sec given (a) f = 0.6456; and (b) f = 0.6043. (Note Refs. 41 and 124.)

29. Estimate the surface tension of n-decane at 20°C using Eq. 11-39 and data in
Table II-4.
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